Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.054
Filtrar
1.
J Agric Food Chem ; 72(14): 7607-7617, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38563422

RESUMEN

Gastrointestinal (GI)-associated viruses, including rotavirus (RV), norovirus (NV), and enterovirus, usually invade host cells, transmit, and mutate their genetic information, resulting in influenza-like symptoms, acute gastroenteritis, encephalitis, or even death. The unique structures of human milk oligosaccharides (HMOs) enable them to shape the gut microbial diversity and endogenous immune system of human infants. Growing evidence suggests that HMOs can enhance host resistance to GI-associated viruses but without a systematic summary to review the mechanism. The present review examines the lactose- and neutral-core HMOs and their antiviral effects in the host. The potential negative impacts of enterovirus 71 (EV-A71) and other GI viruses on children are extensive and include neurological sequelae, neurodevelopmental retardation, and cognitive decline. However, the differences in the binding affinity of HMOs for GI viruses are vast. Hence, elucidating the mechanisms and positive effects of HMOs against different viruses may facilitate the development of novel HMO derived oligosaccharides.


Asunto(s)
Leche Humana , Rotavirus , Lactante , Niño , Humanos , Leche Humana/química , Rotavirus/genética , Rotavirus/metabolismo , Sistema Inmunológico , Antivirales/farmacología , Oligosacáridos/metabolismo
2.
BMC Microbiol ; 24(1): 114, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575861

RESUMEN

BACKGROUND: Diarrhea poses a major threat to bovine calves leading to mortality and economic losses. Among the causes of calf diarrhea, bovine rotavirus is a major etiological agent and may result in dysbiosis of gut microbiota. The current study was designed to investigate the effect of probiotic Limosilactobacillus fermentum (Accession No.OR504458) on the microbial composition of rotavirus-infected calves using 16S metagenomic analysis technique. Screening of rotavirus infection in calves below one month of age was done through clinical signs and Reverse Transcriptase PCR. The healthy calves (n = 10) were taken as control while the infected calves (n = 10) before treatment was designated as diarrheal group were treated with Probiotic for 5 days. All the calves were screened for the presence of rotavirus infection on each day and fecal scoring was done to assess the fecal consistency. Infected calves after treatment were designated as recovered group. Fecal samples from healthy, recovered and diarrheal (infected calves before sampling) were processed for DNA extraction while four samples from each group were processed for 16S metagenomic analysis using Illumina sequencing technique and analyzed via QIIME 2. RESULTS: The results show that Firmicutes were more abundant in the healthy and recovered group than in the diarrheal group. At the same time Proteobacteria was higher in abundance in the diarrheal group. Order Oscillospirales dominated healthy and recovered calves and Enterobacterials dominated the diarrheal group. Alpha diversity indices show that diversity indices based on richness were higher in the healthy group and lower in the diarrheal group while a mixed pattern of clustering between diarrheal and recovered groups samples in PCA plots based on beta diversity indices was observed. CONCLUSION: It is concluded that probiotic Limosilactobacillus Fermentum N-30 ameliorate the dysbiosis caused by rotavirus diarrhea and may be used to prevent diarrhea in pre-weaned calves after further exploration.


Asunto(s)
Enfermedades de los Bovinos , Microbioma Gastrointestinal , Limosilactobacillus fermentum , Probióticos , Infecciones por Rotavirus , Rotavirus , Animales , Bovinos , Rotavirus/genética , Infecciones por Rotavirus/tratamiento farmacológico , Infecciones por Rotavirus/veterinaria , Microbioma Gastrointestinal/genética , Disbiosis , Diarrea/tratamiento farmacológico , Diarrea/veterinaria , Heces/microbiología , Probióticos/uso terapéutico , Enfermedades de los Bovinos/tratamiento farmacológico , Enfermedades de los Bovinos/microbiología
3.
Biomed Environ Sci ; 37(3): 278-293, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38582992

RESUMEN

Objective: This study aimed to understand the epidemic status and phylogenetic relationships of rotavirus group A (RVA) in the Pearl River Delta region of Guangdong Province, China. Methods: This study included individuals aged 28 days-85 years. A total of 706 stool samples from patients with acute gastroenteritis collected between January 2019 and January 2020 were analyzed for 17 causative pathogens, including RVA, using a Gastrointestinal Pathogen Panel, followed by genotyping, virus isolation, and complete sequencing to assess the genetic diversity of RVA. Results: The overall RVA infection rate was 14.59% (103/706), with an irregular epidemiological pattern. The proportion of co-infection with RVA and other pathogens was 39.81% (41/103). Acute gastroenteritis is highly prevalent in young children aged 0-1 year, and RVA is the key pathogen circulating in patients 6-10 months of age with diarrhea. G9P[8] (58.25%, 60/103) was found to be the predominant genotype in the RVA strains, and the 41 RVA-positive strains that were successfully sequenced belonged to three different RVA genotypes in the phylogenetic analysis. Recombination analysis showed that gene reassortment events, selection pressure, codon usage bias, gene polymorphism, and post-translational modifications (PTMs) occurred in the G9P[8] and G3P[8] strains. Conclusion: This study provides molecular evidence of RVA prevalence in the Pearl River Delta region of China, further enriching the existing information on its genetics and evolutionary characteristics and suggesting the emergence of genetic diversity. Strengthening the surveillance of genotypic changes and gene reassortment in RVA strains is essential for further research and a better understanding of strain variations for further vaccine development.


Asunto(s)
Gastroenteritis , Infecciones por Rotavirus , Rotavirus , Niño , Humanos , Lactante , Preescolar , Rotavirus/genética , Infecciones por Rotavirus/epidemiología , Filogenia , Heces , Gastroenteritis/epidemiología , Genotipo , China/epidemiología , Polimorfismo Genético
4.
Front Cell Infect Microbiol ; 14: 1367385, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38628550

RESUMEN

Introduction: Neonatal calf diarrhea (NCD) is one of the most common diseases in calves, causing huge economic and productivity losses to the bovine industry worldwide. The main pathogens include bovine rotavirus (BRV), bovine coronavirus (BCoV), and Enterotoxigenic Escherichia coli (ETEC) K99. Since multiple infectious agents can be involved in calf diarrhea, detecting each causative agent by traditional methods is laborious and expensive. Methods: In this study, we developed a one-step multiplex Real-Time PCR assay to simultaneously detect BRV, BCoV, and E. coli K99+. The assay performance on field samples was evaluated on 1100 rectal swabs of diseased cattle with diarrhea symptoms and compared with the conventional gel-based RT-PCR assay detect BRV, BCoV, and E. coli K99+. Results: The established assay could specifically detect the target pathogens without cross-reactivity with other pathogens. A single real-time PCR can detect ~1 copy/µL for each pathogen, and multiplex real-time PCR has a detection limit of 10 copies/µL. Reproducibility as measured by standard deviation and coefficient of variation were desirable. The triple real-time PCR method established in this study was compared with gel-based PT-PCR. Both methods are reasonably consistent, while the real-time PCR assay was more sensitive and could rapidly distinguish these three pathogens in one tube. Analysis of surveillance data showed that BRV and BCoV are major enteric viral pathogens accounting for calves' diarrhea in China. Discussion: The established assay has excellent specificity and sensitivity and was suitable for clinical application. The robustness and high-throughput performance of the developed assay make it a powerful tool in diagnostic applications and calf diarrhea research. ​.


Asunto(s)
Enfermedades de los Bovinos , Escherichia coli Enterotoxigénica , Rotavirus , Animales , Bovinos , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Reproducibilidad de los Resultados , Diarrea/diagnóstico , Diarrea/veterinaria , Rotavirus/genética , Enfermedades de los Bovinos/diagnóstico , Heces
5.
J Med Virol ; 96(4): e29565, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38558056

RESUMEN

Group A rotaviruses (RVAs) are generally highly species-specific; however, some strains infect across species. Feline RVAs sporadically infect humans, causing gastroenteritis. In 2012 and 2013, rectal swab samples were collected from 61 asymptomatic shelter cats at a public health center in Mie Prefecture, Japan, to investigate the presence of RVA and any association with human infections. The analysis identified G6P[9] strains in three cats and G3P[9] strains in two cats, although no feline RVA sequence data were available for the former. A whole-genome analysis of these G6P[9] strains identified the genotype constellation G6-P[9]-I2-R2-C2-M2-A3-N2-T3-E3-H3. The nucleotide identity among these G6P[9] strains exceeded 99.5% across all 11 gene segments, indicating the circulation of this G6P[9] strain among cats. Notably, strain RVA/Human-wt/JPN/KF17/2010/G6P[9], previously detected in a 3-year-old child with gastroenteritis, shares high nucleotide identity (>98%) with Mie20120017f, the representative G6P[9] strain in this study, across all 11 gene segments, confirming feline RVA infection and symptomatic presentation in this child. The VP7 gene of strain Mie20120017f also shares high nucleotide identity with other sporadically reported G6 RVA strains in humans. This suggests that feline-origin G6 strains as the probable source of these sporadic G6 RVA strains causing gastroenteritis in humans globally. Moreover, a feline-like human G6P[8] strain circulating in Brazil in 2022 was identified, emphasizing the importance of ongoing surveillance to monitor potential global human outbreaks of RVA.


Asunto(s)
Gastroenteritis , Infecciones por Rotavirus , Rotavirus , Gatos , Humanos , Animales , Preescolar , Rotavirus/genética , Infecciones por Rotavirus/epidemiología , Infecciones por Rotavirus/veterinaria , Infecciones por Rotavirus/genética , Genoma Viral , Filogenia , Gastroenteritis/epidemiología , Gastroenteritis/veterinaria , Gastroenteritis/genética , Genotipo , Brotes de Enfermedades , Nucleótidos
6.
PLoS Pathog ; 20(4): e1011750, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38574119

RESUMEN

Rotaviruses infect cells by delivering into the cytosol a transcriptionally active inner capsid particle (a "double-layer particle": DLP). Delivery is the function of a third, outer layer, which drives uptake from the cell surface into small vesicles from which the DLPs escape. In published work, we followed stages of rhesus rotavirus (RRV) entry by live-cell imaging and correlated them with structures from cryogenic electron microscopy and tomography (cryo-EM and cryo-ET). The virus appears to wrap itself in membrane, leading to complete engulfment and loss of Ca2+ from the vesicle produced by the wrapping. One of the outer-layer proteins, VP7, is a Ca2+-stabilized trimer; loss of Ca2+ releases both VP7 and the other outer-layer protein, VP4, from the particle. VP4, activated by cleavage into VP8* and VP5*, is a trimer that undergoes a large-scale conformational rearrangement, reminiscent of the transition that viral fusion proteins undergo to penetrate a membrane. The rearrangement of VP5* thrusts a 250-residue, C-terminal segment of each of the three subunits outward, while allowing the protein to remain attached to the virus particle and to the cell being infected. We proposed that this segment inserts into the membrane of the target cell, enabling Ca2+ to cross. In the work reported here, we show the validity of key aspects of this proposed sequence. By cryo-EM studies of liposome-attached virions ("triple-layer particles": TLPs) and single-particle fluorescence imaging of liposome-attached TLPs, we confirm insertion of the VP4 C-terminal segment into the membrane and ensuing generation of a Ca2+ "leak". The results allow us to formulate a molecular description of early events in entry. We also discuss our observations in the context of other work on double-strand RNA virus entry.


Asunto(s)
Rotavirus , Rotavirus/genética , Proteínas de la Cápside/metabolismo , Cápside/metabolismo , Calcio/metabolismo , Liposomas/análisis , Liposomas/metabolismo
7.
Virol J ; 21(1): 94, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659036

RESUMEN

BACKGROUND: The causative agents of diarrhea, rotavirus B (RVB) and rotavirus C (RVC) are common in adults and patients of all age groups, respectively. Due to the Rotavirus A (RVA) vaccination program, a significant decrease in the number of gastroenteritis cases has been observed globally. The replacement of RVA infections with RVB, RVC, or other related serogroups is suspected due to the possibility of reducing natural selective constraints due to RVA infections. The data available on RVB and RVC incidence are scant due to the lack of cheap and rapid commercial diagnostic assays and the focus on RVA infections. The present study aimed to develop real-time RT‒PCR assays using the data from all genomic RNA segments of human RVB and RVC strains available in the Gene Bank. RESULTS: Among the 11 gene segments, NSP3 and NSP5 of RVB and the VP6 gene of RVC were found to be suitable for real-time RT‒PCR (qRT‒PCR) assays. Fecal specimens collected from diarrheal patients were tested simultaneously for the presence of RVB (n = 192) and RVC (n = 188) using the respective conventional RT‒PCR and newly developed qRT‒PCR assays. All RVB- and RVC-positive specimens were reactive in their respective qRT‒PCR assays and had Ct values ranging between 23.69 and 41.97 and 11.49 and 36.05, respectively. All known positive and negative specimens for other viral agents were nonreactive, and comparative analysis showed 100% concordance with conventional RT‒PCR assays. CONCLUSIONS: The suitability of the NSP5 gene of RVB and the VP6 gene of RVC was verified via qRT‒PCR assays, which showed 100% sensitivity and specificity. The rapid qRT‒PCR assays developed will be useful diagnostic tools, especially during diarrheal outbreaks for testing non-RVA rotaviral agents and reducing the unnecessary use of antibiotics.


Asunto(s)
Diarrea , Heces , Reacción en Cadena en Tiempo Real de la Polimerasa , Infecciones por Rotavirus , Rotavirus , Rotavirus/genética , Rotavirus/aislamiento & purificación , Humanos , Infecciones por Rotavirus/virología , Infecciones por Rotavirus/diagnóstico , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Heces/virología , Diarrea/virología , Diarrea/diagnóstico , Sensibilidad y Especificidad , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Proteínas no Estructurales Virales/genética , Antígenos Virales/genética , ARN Viral/genética , Proteínas de la Cápside/genética , Genoma Viral/genética , Gastroenteritis/virología , Gastroenteritis/diagnóstico
8.
Viruses ; 16(3)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38543776

RESUMEN

Rotaviruses are a significant cause of severe, potentially life-threatening gastroenteritis in infants and the young of many economically important animals. Although vaccines against porcine rotavirus exist, both live oral and inactivated, their effectiveness in preventing gastroenteritis is less than ideal. Thus, there is a need for the development of new generations of porcine rotavirus vaccines. The Ohio State University (OSU) rotavirus strain represents a Rotavirus A species with a G5P[7] genotype, the genotype most frequently associated with rotavirus disease in piglets. Using complete genome sequences that were determined via Nanopore sequencing, we developed a robust reverse genetics system enabling the recovery of recombinant (r)OSU rotavirus. Although rOSU grew to high titers (~107 plaque-forming units/mL), its growth kinetics were modestly decreased in comparison to the laboratory-adapted OSU virus. The reverse genetics system was used to generate the rOSU rotavirus, which served as an expression vector for a foreign protein. Specifically, by engineering a fused NSP3-2A-UnaG open reading frame into the segment 7 RNA, we produced a genetically stable rOSU virus that expressed the fluorescent UnaG protein as a functional separate product. Together, these findings raise the possibility of producing improved live oral porcine rotavirus vaccines through reverse-genetics-based modification or combination porcine rotavirus vaccines that can express neutralizing antigens for other porcine enteric diseases.


Asunto(s)
Gastroenteritis , Infecciones por Rotavirus , Vacunas contra Rotavirus , Rotavirus , Humanos , Animales , Porcinos , Genética Inversa , Ohio , Universidades , Infecciones por Rotavirus/prevención & control , Infecciones por Rotavirus/veterinaria , Gastroenteritis/prevención & control , Gastroenteritis/veterinaria
9.
Viruses ; 16(3)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38543803

RESUMEN

Rotavirus infection is a leading cause of severe dehydrating gastroenteritis in children under 5 years of age. Although rotavirus-associated mortality has decreased considerably because of the introduction of the worldwide rotavirus vaccination, the global burden of rotavirus-associated gastroenteritis remains high. Current vaccines have a number of disadvantages; therefore, there is a need for innovative approaches in rotavirus vaccine development. In the current study, a universal recombinant rotavirus antigen (URRA) for a novel recombinant vaccine candidate against rotavirus A was obtained and characterised. This antigen included sequences of the VP8* subunit of rotavirus spike protein VP4. For the URRA, for the first time, two approaches were implemented simultaneously-the application of a highly conserved neutralising epitope and the use of the consensus of the extended protein's fragment. The recognition of URRA by antisera to patient-derived field rotavirus isolates was proven. Plant virus-based spherical particles (SPs), a novel, effective and safe adjuvant, considerably enhanced the immunogenicity of the URRA in a mouse model. Given these facts, a URRA + SPs vaccine candidate is regarded as a prospective basis for a universal vaccine against rotavirus.


Asunto(s)
Gastroenteritis , Infecciones por Rotavirus , Vacunas contra Rotavirus , Rotavirus , Animales , Ratones , Niño , Humanos , Preescolar , Rotavirus/genética , Estudios Prospectivos , Anticuerpos Antivirales , Vacunas Sintéticas/genética , Gastroenteritis/prevención & control , Vacunas contra Rotavirus/genética
10.
Viruses ; 16(3)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38543818

RESUMEN

Porcine rotavirus A (PoRVA) is an enteric pathogen capable of causing severe diarrhea in suckling piglets. Investigating the prevalence and molecular characteristics of PoRVA in the world, including China, is of significance for disease prevention. In 2022, a total of 25,768 samples were collected from 230 farms across China, undergoing porcine RVA positivity testing. The results showed that 86.52% of the pig farms tested positive for porcine RVA, with an overall positive rate of 51.15%. Through the genetic evolution analysis of VP7, VP4 and VP6 genes, it was revealed that G9 is the predominant genotype within the VP7 segment, constituting 56.55%. VP4 genotypes were identified as P[13] (42.22%), P[23] (25.56%) and P[7] (22.22%). VP6 exhibited only two genotypes, namely I5 (88.81%) and I1 (11.19%). The prevailing genotype combination for RVA was determined as G9P[23]I5. Additionally, some RVA strains demonstrated significant homology between VP7, VP4 and VP6 genes and human RV strains, indicating the potential for human RV infection in pigs. Based on complete genome sequencing analysis, a special PoRVA strain, CHN/SD/LYXH2/2022/G4P[6]I1, had high homology with human RV strains, revealing genetic reassortment between human and porcine RV strains in vivo. Our data indicate the high prevalence, major genotypes, and cross-species transmission of porcine RVA in China. Therefore, the continuous monitoring of porcine RVA prevalence is essential, providing valuable insights for virus prevention and control, and supporting the development of candidate vaccines against porcine RVA.


Asunto(s)
Infecciones por Rotavirus , Rotavirus , Humanos , Animales , Porcinos , Rotavirus/genética , Filogenia , Infecciones por Rotavirus/epidemiología , Infecciones por Rotavirus/veterinaria , Infecciones por Rotavirus/genética , Genoma Viral , Genotipo
11.
Hum Vaccin Immunother ; 20(1): 2322202, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38478958

RESUMEN

Rotavirus (RV) vaccines were first introduced in 2011 and adopted for universal vaccination in 2020 in Japan. However, the effectiveness of RV vaccines after being adopted for universal vaccination in 2020 has not been reported. Because of the easy accessibility of clinics in Japan, many children are not usually hospitalized for RV gastroenteritis (RVGE). Therefore, in order to evaluate the impact of the RV vaccine since 2008, we investigated the incidence of hospitalization for RVGE as well as the frequency of children aged < 5 years who received medical treatment for severe RVGE at clinics in Shibata City, Japan. The RV vaccine coverage rate was 94.0% (1,046/1,113) in Shibata City after universal vaccination in 2020; this was a significant increase from previous rates. The incidence per 1000 person - years for RVGE hospitalization and severe RVGE at clinics were significantly higher among children aged < 3 years than in previous time periods. The incidence in children with all acute gastroenteritis (AGE) decreased significantly after universal vaccination during the COVID-19 pandemic. The proportion of severe RVGE among all AGE cases also decreased significantly after universal vaccination among children aged < 3 years (0.0%) and those aged 3-4 years (0.6%). There were significant differences in the distribution of RV genotypes isolated from the feces of children with RVGE between different eras divided by RV vaccination rates, especially G1P[8], which was the major genotype before it recently almost disappeared. Further studies are warranted to assess the impact of the COVID-19 pandemic.


Asunto(s)
COVID-19 , Gastroenteritis , Infecciones por Rotavirus , Vacunas contra Rotavirus , Rotavirus , Niño , Humanos , Lactante , Incidencia , Japón/epidemiología , Pandemias , Gastroenteritis/epidemiología , Gastroenteritis/prevención & control , Infecciones por Rotavirus/epidemiología , Infecciones por Rotavirus/prevención & control , Vacunación , Hospitalización , COVID-19/epidemiología
12.
13.
Sci Rep ; 14(1): 7548, 2024 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555283

RESUMEN

The target and mechanism of ellagic acid (EA) against rotavirus (RV) were investigated by network pharmacology, computational biology, and surface plasmon resonance verification. The target of EA was obtained from 11 databases such as HIT and TCMSP, and RV-related targets were obtained from the Gene Cards database. The relevant targets were imported into the Venny platform to draw a Venn diagram, and their intersections were visualized. The protein-protein interaction networks (PPI) were constructed using STRING, DAVID database, and Cytoscape software, and key targets were screened. The target was enriched by Gene Ontology (GO) and KEGG pathway, and the 'EA anti-RV target-pathway network' was constructed. Schrodinger Maestro 13.5 software was used for molecular docking to determine the binding free energy and binding mode of ellagic acid and target protein. The Desmond program was used for molecular dynamics simulation. Saturation mutagenesis analysis was performed using Schrodinger's Maestro 13.5 software. Finally, the affinity between ellagic acid and TLR4 protein was investigated by surface plasmon resonance (SPR) experiments. The results of network pharmacological analysis showed that there were 35 intersection proteins, among which Interleukin-1ß (IL-1ß), Albumin (ALB), Nuclear factor kappa-B1 (NF-κB1), Toll-Like Receptor 4 (TLR4), Tumor necrosis factor alpha (TNF-α), Tumor protein p53 (TP53), Recombinant SMAD family member 3 (SAMD3), Epidermal growth factor (EGF) and Interleukin-4 (IL-4) were potential core targets of EA anti-RV. The GO analysis consists of biological processes (BP), cellular components (CC), and molecular functions (MF). The KEGG pathways with the highest gene count were mainly related to enteritis, cancer, IL-17 signaling pathway, and MAPK signaling pathway. Based on the crystal structure of key targets, the complex structure models of TP53-EA, TLR4-EA, TNF-EA, IL-1ß-EA, ALB-EA, NF-κB1-EA, SAMD3-EA, EGF-EA, and IL-4-EA were constructed by molecular docking (XP mode of flexible docking). The MMGBS analysis and molecular dynamics simulation were also studied. The Δaffinity of TP53 was highest in 220 (CYS → TRP), 220 (CYS → TYR), and 220 (CYS → PHE), respectively. The Δaffinity of TLR4 was highest in 136 (THR → TYR), 136 (THR → PHE), and 136 (THR → TRP). The Δaffinity of TNF-α was highest in 150 (VAL → TRP), 18 (ALA → GLU), and 144 (PHE → GLY). SPR results showed that ellagic acid could bind TLR4 protein specifically. TP53, TLR4, and TNF-α are potential targets for EA to exert anti-RV effects, which may ultimately provide theoretical basis and clues for EA to be used as anti-RV drugs by regulating TLR4/NF-κB related pathways.


Asunto(s)
Medicamentos Herbarios Chinos , Rotavirus , Factor de Necrosis Tumoral alfa , Ácido Elágico/farmacología , Interleucina-4 , Resonancia por Plasmón de Superficie , Receptor Toll-Like 4 , Factor de Crecimiento Epidérmico , Farmacología en Red , Simulación del Acoplamiento Molecular , Biología Computacional , Albúminas
14.
Virology ; 594: 110062, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38522136

RESUMEN

Viral diarrhea is the predominant digestive tract sickness in piglings, resulting in substantial profit losses in the porcine industry. Porcine rotavirus A (PoRVA) and porcine epidemic diarrhea virus (PEDV) are the main causes of grave gastroenteritis and massive dysentery, especially in piglets. PoRVA and PEDV have high transmissibility, exhibit similar clinical symptoms, and frequently co-occur. Therefore, to avoid financial losses, a quick, highly efficient, objective diagnostic test for the prevention and detection of these diseases is required. Enzymatic recombinase amplification (ERA) is a novel technology based on isothermal nucleic acid amplification. It demonstrates high sensitivity and excellent specificity, with a short processing time and easy operability, compared with other in vitro nucleic acid amplification technologies. In this study, a dual ERA method to detect and distinguish between PEDV and PoRVA nucleic acids was established. The method shows high sensitivity, as the detection limits were 101 copies/µL for both viruses. To test the usefulness of this method in clinical settings, we tested 64 swine clinical samples. Our results were 100% matched with those acquired using a commercially available kit. Therefore, we have successfully developed a dual diagnostic ERA nucleic acids method for detecting and distinguishing between PEDV and PoRVA.


Asunto(s)
Infecciones por Coronavirus , Ácidos Nucleicos , Virus de la Diarrea Epidémica Porcina , Rotavirus , Enfermedades de los Porcinos , Animales , Porcinos , Virus de la Diarrea Epidémica Porcina/genética , Recombinasas/genética , Enfermedades de los Porcinos/diagnóstico , Sensibilidad y Especificidad , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/veterinaria , Diarrea/diagnóstico , Diarrea/veterinaria
15.
Vet Rec ; 194(6): iii, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38488588
16.
Arch Virol ; 169(3): 63, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38451342

RESUMEN

Group A rotavirus (RVA) sequences were detected in 10.8% (23/212) and 20.7% (87/421) of fecal samples collected in 2017-2022 from wild boars and domestic pigs, using next-generation sequencing. Complete genome sequence analysis of one wild boar and 13 domestic pig RVAs revealed that six of them carried the rare H2 NSP5 genotype. Out of the 39 samples for which the NSP5 genotype could be determined, 23 (59.0%) were of genotype H2. H2 porcine RVAs consist exclusively of Japanese porcine RVAs and exhibit sequence diversity in each segment, suggesting that H2 porcine RVAs may have evolved through reassortment within the Japanese pig population.


Asunto(s)
Rotavirus , Sus scrofa , Porcinos , Animales , Rotavirus/genética , Japón/epidemiología , Prevalencia , Genómica , Genotipo
17.
Arch Virol ; 169(3): 72, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459213

RESUMEN

Species A rotaviruses are the leading viral cause of acute gastroenteritis in children under 5 years of age worldwide. Despite progress in the characterization of the pathogenesis and immunology of rotavirus-induced gastroenteritis, correlates of protection (CoPs) in the course of either natural infection or vaccine-induced immunity are not fully understood. There are numerous factors such as serological responses (IgA and IgG), the presence of maternal antibodies (Abs) in breast milk, changes in the intestinal microbiome, and rotavirus structural and non-structural proteins that contribute to the outcome of the CoP. Indeed, while an intestinal IgA response and its surrogate, the serum IgA level, are suggested as the principal CoPs for oral rotavirus vaccines, the IgG level is more likely to be a CoP for parenteral non-replicating rotavirus vaccines. Integrating clinical and immunological data will be instrumental in improving rotavirus vaccine efficacy, especially in low- and middle-income countries, where vaccine efficacy is significantly lower than in high-income countries. Further knowledge on CoPs against rotavirus disease will be helpful for next-generation vaccine development. Herein, available data and literature on interacting components and proposed CoPs against human rotavirus disease are reviewed, and limitations and gaps in our knowledge in this area are discussed.


Asunto(s)
Gastroenteritis , Infecciones por Rotavirus , Vacunas contra Rotavirus , Rotavirus , Niño , Femenino , Humanos , Preescolar , Gastroenteritis/prevención & control , Anticuerpos Antivirales , Vacunación , Inmunoglobulina A , Inmunoglobulina G , Vacunas Atenuadas
18.
Microb Pathog ; 190: 106628, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38508422

RESUMEN

Rotavirus infections in suckling and weaning piglets cause severe dehydration and death, resulting in significant economic losses in the pig breeding industry. With the continuous emergence of porcine rotavirus (PoRV) variants and poor vaccine cross-protection among various genotypes, there is an urgent need to develop alternative strategies such as seeking effective antiviral products from nature, microbial metabolites and virus-host protein interaction. Sialidases play a crucial role in various physiopathological processes and offer a promising target for developing antivirus drugs. However, the effect of bacterial-derived sialidases on the infection of PoRVs remains largely unknown. Herein, we investigated the impact of bacterial-derived sialidases (sialidase Cp and Vc) on PoRV strain OSU(Group A) infection, using differentiated epithelial monkey kidney cells (MA104) as a model. Our results indicated that the pretreatment of MA104 with exogenous sialidases effectively suppressed PoRV OSU in a concentration-dependent manner. Notably, even at a concentration of 0.01 µU/mL, sialidases significantly inhibited the virus (MOI = 0.01). Meanwhile, we found that sialidase Vc pretreatment sharply reduced the binding rate of PoRV OSU. Last, we demonstrated that PoRV OSU might recognize α-2,3-linked sialic acid as the primary attachment factor in MA104. Our findings provide new insights into the underlying mechanism of PoRV OSU infections, shedding lights on the development of alternative antivirus approaches based on bacteria-virus interaction.


Asunto(s)
Neuraminidasa , Infecciones por Rotavirus , Rotavirus , Replicación Viral , Animales , Neuraminidasa/metabolismo , Neuraminidasa/genética , Rotavirus/efectos de los fármacos , Rotavirus/fisiología , Porcinos , Replicación Viral/efectos de los fármacos , Línea Celular , Células Epiteliales/virología , Células Epiteliales/microbiología , Acoplamiento Viral/efectos de los fármacos , Ácido N-Acetilneuramínico/metabolismo , Ácido N-Acetilneuramínico/farmacología , Antivirales/farmacología , Haplorrinos , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/microbiología
19.
Microb Pathog ; 190: 106612, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38467166

RESUMEN

Rotavirus group A (RVA) is a main pathogen causing diarrheal diseases in humans and animals. Various genotypes are prevalent in the Chinese pig herd. The genetic diversity of RVA lead to distinctly characteristics. In the present study, a porcine RVA strain, named AHFY2022, was successfully isolated from the small intestine tissue of piglets with severe diarrhea. The AHFY2022 strain was identified by cytopathic effects (CPE) observation, indirect immunofluorescence assay (IFA), electron microscopy (EM), high-throughput sequencing, and pathogenesis to piglets. The genomic investigation using NGS data revealed that AHFY2022 exhibited the genotypes G9-P[23]-I5-R1-C1-M1-A8-N1-T1-E1-H1, using the online platform the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) (https://www.bv-brc.org/). Moreover, experimental inoculation in 5-day-old and 27-day-old piglets demonstrated that AHFY2022 caused severe diarrhea, fecal shedding, small intestinal villi damage, and colonization in all challenged piglets. Taken together, our results detailed the virological features of the porcine rotavirus G9P[23] from China, including the whole-genome sequences, genotypes, growth kinetics in MA104 cells and the pathogenicity in suckling piglets.


Asunto(s)
Diarrea , Genoma Viral , Genotipo , Filogenia , Infecciones por Rotavirus , Rotavirus , Enfermedades de los Porcinos , Animales , Rotavirus/genética , Rotavirus/aislamiento & purificación , Rotavirus/clasificación , Rotavirus/patogenicidad , Porcinos , Infecciones por Rotavirus/virología , Infecciones por Rotavirus/veterinaria , China , Enfermedades de los Porcinos/virología , Diarrea/virología , Diarrea/veterinaria , Intestino Delgado/virología , Intestino Delgado/patología , Heces/virología , Secuenciación de Nucleótidos de Alto Rendimiento
20.
mBio ; 15(4): e0049924, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38470055

RESUMEN

Rotavirus (RV) replication takes place in the viroplasms, cytosolic inclusions that allow the synthesis of virus genome segments and their encapsidation in the core shell, followed by the addition of the second layer of the virion. The viroplasms are composed of several viral proteins, including NSP5, which serves as the main building block. Microtubules, lipid droplets, and miRNA-7 are among the host components recruited in viroplasms. We investigated the interaction between RV proteins and host components of the viroplasms by performing a pull-down assay of lysates from RV-infected cells expressing NSP5-BiolD2. Subsequent tandem mass spectrometry identified all eight subunits of the tailless complex polypeptide I ring complex (TRiC), a cellular chaperonin responsible for folding at least 10% of the cytosolic proteins. Our confirmed findings reveal that TRiC is brought into viroplasms and wraps around newly formed double-layered particles. Chemical inhibition of TRiC and silencing of its subunits drastically reduced virus progeny production. Through direct RNA sequencing, we show that TRiC is critical for RV replication by controlling dsRNA genome segment synthesis, particularly negative-sense single-stranded RNA. Importantly, cryo-electron microscopy analysis shows that TRiC inhibition results in defective virus particles lacking genome segments and polymerase complex (VP1/VP3). Moreover, TRiC associates with VP2 and NSP5 but not with VP1. Also, VP2 is shown to be essential for recruiting TRiC in viroplasms and preserving their globular morphology. This study highlights the essential role of TRiC in viroplasm formation and in facilitating virion assembly during the RV life cycle. IMPORTANCE: The replication of rotavirus takes place in cytosolic inclusions termed viroplasms. In these inclusions, the distinct 11 double-stranded RNA genome segments are co-packaged to complete a genome in newly generated virus particles. In this study, we show for the first time that the tailless complex polypeptide I ring complex (TRiC), a cellular chaperonin responsible for the folding of at least 10% of the cytosolic proteins, is a component of viroplasms and is required for the synthesis of the viral negative-sense single-stranded RNA. Specifically, TRiC associates with NSP5 and VP2, the cofactor involved in RNA replication. Our study adds a new component to the current model of rotavirus replication, where TRiC is recruited to viroplasms to assist replication.


Asunto(s)
Rotavirus , Rotavirus/genética , Compartimentos de Replicación Viral/metabolismo , Proteínas no Estructurales Virales/metabolismo , Microscopía por Crioelectrón , Replicación Viral/fisiología , ARN , Péptidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...